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Abstract 
In image  matching  applications  such  as  tracking and 

stereo  matching, it is  common  to  use  the  sum-of-squared- 
diflerences (SSD) measure  to  determine  the best match  for 
an  image  template.  However,  this  measure  is  sensitive  to 
outliers  and  is  not  robust  to  template  variations. W e  de- 
scribe  a robust  measure  and  eficient search  strategy for  
template  matching  with a binary or greyscale template  us- 
ing a maximum-likelihood  formulation.  In  addition  to sub- 
pixel  localization  and  uncertainty  estimation,  these tech- 
niques  allow  optimal  feature  selection based on  minimizing 
the  localization  uncertainty. W e  examine  the  use of these 
techniques for  object recognition, stereo matching,  feature 
selection,  and  tracking. 

1 Introduction 
Template matching is a common tool in many applica- 

tions, including object recognition, stereo matching, and 
feature tracking. Most applications of template match- 
ing use the sum-of-squared-differences (SSD) measure to 
determine the best match. Unfortunately, this measure is 
sensitive to outliers and it is not robust to variations in the 
template, such as those that occur at occluding boundaries 
in the image. Furthermore, it is important in most appli- 
cations to know  when a match has a significant uncertainty 
or the possibility exists that a qualitatively incorrect posi- 
tion has been found. 

We describe techniques for performing template match- 
ing with subpixel localization, uncertainty estimation, and 
optimal feature selection  using a robust measure. In  this 
problem, we search for  one or more templates in an im- 
age. For example, we may  use the features detected in 
one  image as the templates in order to perform tracking 
in a subsequent image. These techniques are general with 
respect to  the set of pose parameters allowed.  We formu- 
late the method using  two-dimensional  edge and intensity 
templates with the pose space restricted to translations in 
the plane in order to simplify the presentation. However, 
the techniques can be  adapted to other problems. 

The basic  image matching technique that we use  is a 
maximum-likelihood formulation of edge template match- 
ing [2] that we have extended to include matching of 
greyscale templates. In  this formulation, a function is gen- 
erated that assigns a likelihood to each of the possible  tem- 
plate positions. For applications in which a single instance 
of the template  appears in the image,  such as tracking or 
stereo matching, we accept the template position with the 
highest likelihood if the matching uncertainty is below a 
specified threshold. For other recognition applications, we 
accept all template positions with likelihood greater than 

some threshold. A multi-resolution search strategy [l] is 
used so that not all of the template positions need to be 
considered  explicitly,  while still finding the best position 
in a discretized  search space. 

Since the likelihood function measures the probability 
that each position is an instance of the template, error and 
uncertainty will cause the peak to be spread over some vol- 
ume of the pose  space. Integrating the likelihood function 
under the peak  yields an improved measure of the qual- 
ity of the peak as a location of the  template. We perform 
subpixel localization and uncertainty estimation by fitting 
the likelihood  surface with a parameterized function at  the 
locations of the peaks. The probability of a qualitative 
failure is estimated in tracking and stereo matching appli- 
cations by comparing the integral of the likelihood under 
the most  likely  peak to  the integral of the likelihoods in 
the remainder of the pose space. These techniques are 
also  used to perform optimal feature selection, where the 
features selected for tracking are those with the smallest 
expected uncertainty. 

We demonstrate the utility of these techniques in sev- 
eral experiments, including object recognition through 
edge template matching, subpixel stereo matching with 
outlier rejection, and feature selection and tracking in in- 
tensity images. 

2 Maximum-likelihood  matching 
Our method is based upon maximum-likelihood  edge 

matching [2], which  we describe here and  extend to inten- 
sity templates. 

To formalize the problem, let us say that we have a set 
of template edge  pixels, M = {PI, ...,,urn}, and a set of 
image  edge  pixels, N = { V I ,  ..., vn}. The elements of M 
and N are vectors of the x and y image coordinates. We 
let p E T be a random variable  describing the position of 
the template in the image. W i l e  this makes an implicit 
assumption that exactly one instance of the model appears 
in the image, we may set a threshold on the likelihood at 
each position for cases  where the model may not appear 
or may appear multiple times. 

2.1 Map similarity  measure 

In order to formulate the problem in terms of maximum 
likelihood estimation, we must have  some set of measure- 
ments that are a function of the template position in the 
image. We use the distance from  each template pixel (at 
the position specified  by  some p = [ x  y I t )  to  the closest 
edge  pixel in the edge map as this  set of measurements. We 
denote these distances Dl@), ..., Dm@). In general, these 
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Propagating these values through the probability den- 
sity function  yields a  bound on the likelihood  score that 
can  be  achieved by any position  in the cell: 

n 

Figure 1: A search  strategy  is used that recursively  divides  and 
prunes  cells of the search space. 

distances can  be  found quickly  for  any p if  we precompute 
the distance transform of the image [5, 71. 

We formulate the likelihood function for p as the prod- 
uct of the probability density functions for the distance 
variables. This make the approximation that  the distance 
measurements are independent. We have  found that  this 
yields accurate results, since the correlation  between the 
distances falls off quickly as the points become farther 
apart 

m 

i=l 

This likelihood function is  completely independent of 
the space of template  transformations that are allowed. It 
is  defined  by the locations to which the template position 
maps the  template edges into the image. f(Di(p)).  

2.2 Search strategy 
The search  strategy  that we use to locate instances 

of the  template in the image  is a variation of the multi- 
resolution technique described by Huttenlocher  and Ruck- 
lidge [l, 81. This  method divides the space of model  posi- 
tions into rectilinear cells and determines which  cells  could 
contain  a position satisfying the acceptance criterion. The 
cells that pass the  test are divided into subcells,  which are 
examined  recursively. The rest are pruned (Fig. 1). If a 
conservative test is used, this  method is guaranteed to find 
the best location  in a discretized  search  space. 

In order to determine whether  some  cell C in the pose 
space may contain  a position  meeting the criterion, we 
examine the pose c at the center of the cell. A bound is 
computed on the maximum distance between the location 
to which an edge  pixel  in the template is mapped by c 
and by any  other pose  in the cell. We denote  this distance 
Ac.  If  we treat  template positions as functions that map 
template pixels into the image then we can write Ac as 
follows: 

Now, to place a  bound on the quality of the cell, we 
compute  a  bound on the minimum distance from  each  edge 
pixel  in the  template  to any  edge  pixel  in the image that 
can be achieved  over the entire cell. This is done by sub- 
tracting  the maximum  change  over the cell, Ac,  from the 
distance achieved at  the center of the cell,  D;(c): 

If this  bound does not  surpass the best that we have 
found so far (or  some threshold, if  we  seek multiple in- 
stances), then  the entire cell  is pruned from the search. 
Otherwise, the cell  is  divided into two  cells  by  slicing it 
along the longest  axis and  the process  is repeated recur- 
sively  on the subcells. In practice, the pose  space  is  dis- 
cretized at pixel  resolution and  the recursion ends when a 
cell  is  reached that contains a single  pose  in the discretized 
space,  which is tested explicitly. 

2.3 Greyscale templates 
While these techniques  have, so far, been  described 

in terms of binary  edge maps,  they  can  be  extended to 
greyscale templates by considering the image to be  a sur- 
face  in three dimensions ( x ,  y, and intensity). We  will thus 
describe the techniques  in terms of occupied pixels, which 
are the edges  in an edge map or the intensity surface  in the 
three-dimensional representation of a greyscale  image. The 
templates  and images  can thus be  considered to be sets of 
3-vectors,  corresponding to  the occupied  pixels. We must 
now define a distance function over the  three dimensions 
for  greyscale  images and  compute nearest neighbors with 
respect to this distance, but  the  remainder of the method 
is  unchanged. 

For  two  pixels pi = (z,,y;, z i )  and uj = (xj,yj, z j ) ,  
where z is the intensity, we have  used a variation of the 
L1 distance metric, since this makes the distance compu- 
tations simple: 

D ( p i , u j ) = I x i - x j j + + y i - y j I + y l a i - Z j I  

The value of y should be chosen  such that  the errors in 
each  dimension  have the same  standard deviation. 

3 Estimating the PDF 
For the uncertainty estimation to be accurate, it is  im- 

portant that we use a probability density function (PDF) 
that closely  models the sensor uncertainty. In this past we 
have  used a  robust (but heuristic) measure [2]. We develop 
a similar  measure  here  using the principle that  the density 
can be  modeled as the sum of two terms (one  for  inliers 
and one  for outliers): 

f ( 4  = 4 1 ( 4  + (1 - 4 f 2 ( 4  

The fist  term describes the error distribution when the 
pixel  is an inlier  (in the sense that  the location that gener- 
ated  the  template pixel  also appears in the image).  Usu- 
ally, we can model this distribution as normal in the dis- 
tance to  the closest  occupied  pixel.  For the 2D case, this 
yields: 
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Note that  this is a bivariate probability density  in 
(dx,dy), rather  than  a univariate probability density in 
I ldll, which  would imply  rather different assumptions  about 
the error distribution. Formally, we should think of d as 
a 2-vector of the x and y distances to  the closest  occupied 
pixel  in the image.  However, to compute the probability 
density function, it will  only be necessary to know the mag- 
nitude of d.  Thus, the orientation of the distance vector  is 
irrelevant. 

For  greyscale  image matching, we use: 

While the distance measure that we use  for  greyscale  im- 
ages  is not  Euclidean, it has resulted in  excellent results. 
Alternatively, we could  use  Euclidean distances with  a 
more  complex distance transform algorithm. 

The second term in the  PDF describes the error distri- 
bution when the cell  is an outlier. In this case, the  tem- 
plate pixel  does not  appear in the image  for  some  reason 
(such as occlusion). In theory, this  term should  also de- 
crease as d increases,  since  even true outliers are likely to 
be  near some  occupied  pixel in the image.  However, this 
allows  pathological  cases to have an  undue effect  on the 
likelihood  for a particular template position. In practice, 
we have found that modeling this  term as the expected 
probability density for a  random outlier yields  excellent 
results. 

fdd)  = few 
It should be  noted that f2(d) is not  a probability distri- 
bution, since it does not integrate to unity. This is  un- 
avoidable in a  robust measure,  since  any true probability 
distribution must become arbitrarily close to zero  for  large 
values of D; ( t ) .  

It is interesting to note that we could  achieve the same 
results as the SSD measure by assuming that there are no 
outliers (cy = 1) and using: 

The maximum-likelihood  measure  gains robustness by 
explicitly  modeling the possibility of outliers and allowing 
matches against pixels that do not precisely  overlap the 
template pixel. 

Let us now consider the  constants in this probability 
density function. First, a is the probability that any  par- 
ticular occupied  pixel in the template is an inlier  in the 
image. We must  estimate  this value  based  on  prior  knowl- 
edge of the problem and  thus  it is  possible that we may 
use an inaccurate  estimate of this value.  However, we have 
found that  the localization  is  insensitive to  the value of this 
variable. Next, u is the  standard deviation of the me* 
surements that are inliers. This value  can be  estimated 
by modeling the characteristics of the sensor  or it can  be 
estimated empirically by examining  real data, which  is the 
method that we have  used  in  our  experiments.  Finally, 

fexp is the expected probability density for a  random out- 
lier point. Recall that we use a bivariate probability den- 
sity function for  edge  matching.  For this case, we have: 

This value can be estimated efficiently  using the Eu- 
clidean distance transform of the image. We fist  compute 
a histogram of the signed x and y distances to  the nearest 
neighbor  for  every  pixel in the image. These values  can 
be computed easily as a  by-product of the computation 
of the distance transform [5]. For an image with W x H 
pixels and distance transform  histogram h(x, y), we can 
approximate fexp as: 

This  can also be extended to  the greyscale  case. In 
practice, the use of an empirical estimate does not have a 
large  effect  on the matching results. 

4 Subpixel  localization 
With  the probabilistic  formulation of template  match- 

ing  described  above, we can  estimate the uncertainty in the 
localization  in terms of both  the variance of the estimated 
positions and  the probability that a qualitative failure has 
occurred.  Since the likelihood function measures the prob- 
ability that each  position  is the actual model position, the 
uncertainty in the localization  is  measured by the  rate  at 
which the likelihood function falls off from the peak. In ad- 
dition, we perform subpixel localization  in the discretized 
pose  space  by fitting a function to  the peak that occurs at 
the most  likely  model  position. 

Let us  take as an  assumption that  the likelihood  func- 
tion approximates  a  normal distribution in the neighbor- 
hood around the peak location. Fitting such a  normal 
distribution to  the computed likelihoods  yields both  an 
estimated variance  in the localization estimate  and  a  sub- 
pixel estimate of the peak location. While the approxi- 
mation of the likelihood function as a  normal distribution 
may not always  be  precise, it yields a good fit to  the local 
neighborhood around the peak and  our  experimental re- 
sults indicate that accurate results are achieved with  this 
approximation. 

Now,  we perform  our computations in the domain of 
the  logarithm of the likelihood  function: 

m. 

Since the logarithm of a  normal distribution is a polyno- 
mial of order 2, we fit the peak  in the log-likelihood  func- 
tion with such a polynomial.  For  simplicity, let us assume 
independence  in the errors in x and y. (This is  unnec- 
essary, but simplifies the presentation.) In  this case, we 
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Figure 2: Distribution of errors  and  estimated  standard devia- 
tions  in  synthetic  template  matching  experiment. (a) Compari- 
son of estimated  distribution of localization  errors  (solid line) to 
observed distribution  (bar  graph). (b) Distribution of estimated 
standard deviations. 

Fitting  this polynomial using a least-squares error crite- 
rion is straightforward [SI. The values of 20 and yo yield 
the subpixel localization result, since this is the estimated 
location of the peak in the likelihood function. In addi- 
tion, a, and a, yield estimates for the uncertainty in the 
localization result. These results can be extended to sim- 
ilarity transformations or full  affine transformations with 
only  minor  modifications. 

5 Probability  of  failure 
In addition to estimating the uncertainty in the localiz+ 

tion estimate, we can use the likelihood  scores to estimate 
the probability of a failure to detect the correct position 
of the template. We address the case  where exactly one 
instance of the template occurs in the image,  such as in 
tracking or stereo matching. 

We estimate the probability of failure by summing the 
likelihood  scores under the peak selected as the most  likely 
model position and comparing to  the sum of the likelihood 
scores that are not part of this peak. In practice, we can 
usually estimate the sum under the peak by examining a 
small number of values around the peak, since they fall off 
quickly. 

The values  for the remainder of the pose space can be es- 
timated efficiently with some additional computation dur- 
ing the search. Whenever a cell in the search space is 
considered, we compute not only a bound on the maxi- 
mum score that can be  achieved, but also an estimate on 
the average  score that is achieved by determining the score 
for the center of the cell. If the cell is pruned, then the 
sum is incremented by the estimated score multiplied by 
the size of the cell. In practice, this yields a good estimate, 
since  regions with large scores cannot be pruned until the 
cells  become small. We thus get  good estimates when the 
score is large and, when the estimate is not as good, it is 

Figure 3: Object  recognition  example. (a) Edge template. (b) 
Edges extracted. (c) Recognition  result. 

because the score  is small and does not significantly  affect 
the overall sum. 

Let Sp be the sum obtained for the largest peak in the 
pose  space and Sn be the sum for the rest of the pose 
space. We can estimate the probability of correctness for 
the largest peak as: 

6 Experiments  with  synthetic  data 
These techniques were first tested on synthetic data for 

which  we could compare the performance of the techniques 
with precise ground truth.  In these experiments, we ran- 
domly generated synthetic templates containing 60 feature 
points in a 64x64 unit square. An image containing half 
of these points was then generated using a random trans- 
lation and with a Gaussian error with standard deviation 
u = 1.0  pixels. In addition, 530 clutter edge points were 
added such that  the density of edges wm the same at the 
position of the model as in the rest of the image. Detection 
of the template was then performed  using the techniques 
described  above.  Over  100,000 trials, the template was  cor- 
rectly detected in all but 2 of the cases, with an average 
error in the correct trials of 0.211  pixels in each  dimension. 
The average estimated standard deviation in the localiza- 
tion using the techniques from the previous section was 
0.258 units. 

Figure 2(a) shows the distribution of actual errors ob- 
served  versus the distribution that we expect from the 
average standard deviation estimated in the trials. The 
close similarity of the plots indicates that  the average es- 
timated  standard deviation is a good estimate of the ac- 
tual value. This also validates the approximation of the 
likelihood function as a normal distribution in the neigh- 
borhood of the peak. Figure 2(b) shows the distribution 
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Figure 4: Stereo  matching  example. (a) Left  image of stereo  pair. (b) Complete  disparity  map  computed.  (c)  Disparity  map  after 
pruning. (d) Disparity  map  computed  using  SSD. 

of the estimated standard deviations in this experiment. 
It can be observed that  the estimate is consistent between 
trials, since the plot is strongly peaked near the location 
of the average estimate. Taken together, these plots indi- 
cate that  the  standard deviation estimates are likely to be 
accurate for each individual trial. 

When compared to a version of these techniques that 
does not perform subpixel localization, our method reduces 
the error in the localization by 33.7%. These techniques 
thus improve both  the localization result significantly and 
yield accurate estimates of the standard deviation of the 
localization result. 

7 Applications 

These techniques have  been tested in applications in- 
cluding object recognition, stereo matching, and feature 
selection and tracking. The application of similar tech- 
niques to mobile robot localization has also been  explored 
in [3, 41. 

7.1 Object  recognition 

These techniques can be applied to object recognition 
using  greyscale or edge templates. Given a model  tem- 
plate, we search over  some space of transformations to lo- 
cate  the template in the image. In  this case, we considered 
similarity transformations of an edge template. Figure 3 
shows a simple example where the use of subpixel local- 
ization yields an improvement in the pose estimate. The 
rotation of the template was discretized in 5" intervals. 
When subpixel localization  was not used, the detected ro- 
tation of the template was inaccurate, with an error of 
approximately 3". This problem is  easily corrected when 
subpixel localization is used. 

We note that a finer discretization of the pose  space 
might yield comparable results to  the subpixel localization 
method. However, this would require more computation. 
The subpixel localization techniques can thus  be viewed as 
a technique to improve the computation time of matching 
rather  than  the precision. 
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7.2 Stereo  matching 
These techniques can be applied to stereo matching in a 

fashion similar to correlation-based methods, where small 
windows from  one  image are used as the templates, and 
they are matched against windows in the other image. 

Figure 4 shows an example where stereo matching was 
performed  using these techniques. The disparity, uncer- 
tainty, and probability of a false match were computed 
for  each template in the left  image of the stereo pair by 
matching against the right image. Figure 4(b) shows the 
complete disparity map, which contains outliers and inac- 
curacies due to occlusions and image  regions with low tex- 
ture. Figure 4(c)  displays the disparity map after pruning 
the locations  for which the uncertainty estimate or proba- 
bility of failure is  large. No outliers remain in the disparity 
map. 

For comparison, Figure 4(d) shows the result of apply- 
ing these same techniques using the SSD measure. For 
this case, we can still compute an uncertainty and proba- 
bility of failure using our techniques.  However, the results 
are less accurate. A small number of outliers remain in the 
disparity map. In addition, this measure yields lower qual- 
ity results in the neighborhoods of occlusion boundaries, 
since it is less robust to changes in the composition of the 
template. 

7.3 Feature selection and tracking 
Since the our techniques provide estimates of the un- 

certainty for matching a template,  they can be easily 
adapted to perform feature selection  for tracking with op- 
timal matching uncertainty. This is  performed  by estimat- 
ing the uncertainty of matching each  possible feature with 
the region in the image in which it lies. 

We &st compute a distribution that captures the prob- 
ability of each  image intensity at  the potential template 
locations. This distribution models  only the changes in 
pixel intensity as the camera moves. The translation of 
the pixels in the image is ignored here, since the tem- 
plate matching searches  over the translations. To estimate 
this distribution, we initially take the intensity surface of 
the template to have probability 1. This distribution is 
smoothed in both position and intensity to model noise 



Figure 5: Optimal  feature  selection for greyscale  matching. (a) Features  selected. (b) Tracked features. 

and warping as the camera moves.  We then perform un- 
certainty estimation for  each  possible template by match- 
ing against the computed distribution (which is treated as 
a three-dimensional image). The locations with the lowest 
uncertainty are selected as the optimal features to track. 

Figure 5 shows an example of the feature selection  tech- 
niques applied to  an image of rocky terrain. In this case, 
100 7 x 7 feature  templates were  selected as having the low- 
est uncertainty for tracking. We then performed tracking 
in a subsequent image, after the camera had undergone 
forward motion. For  each  selected feature, we searched 
the entire post-move  image  for a match, although, in prac- 
tice, the search space would  usually  be limited to a smaller 
region. Figure 5(b) shows the 72 features that survived 
pruning using the uncertainty and probability of failure 
measures. No false  positives remain in the tracked fe+ 
tures. 

To compare against SSD matching, this same procedure 
was applied to a sequence of images similar to Figure 5. 
Over this  set of images, our feature selection and track- 
ing techniques tracked 70.6% of the features, with 1.6% 
outliers. For the same images, SSD matching techniques 
tracked only 38.0% with 2.3% outliers. Thus, even with 
a lower tracking rate,  the SSD techniques yield a higher 
rate of outliers owing to the lower robustness to occluding 
boundaries and intensity variations. 

8 Summary 
Template matching techniques using the SSD measure 

axe susceptible to errors in the presence of outliers and oc- 
clusion boundaries. In addition, it is important in many 
applications to perform accurate subpixel localization and 
uncertainty estimation. This work has developed meth- 
ods to perform these tasks using robust template match- 
ing  for  greyscale and edge templates. The basic matching 
framework that we use  is  maximum-likelihood estimation 
of the template position in the image. In order to per- 
form subpixel localization and uncertainty estimation, we 
fit the peak in the likelihood function with a normal dis- 
tribution.  The  summit of the distribution yields the lo- 

calization estimation and the  standard deviation of the 
distribution yields an estimate on the uncertainty of the 
localization. The probability of a qualitative failure is esti- 
mated by examining the likelihood  scores. Experiments on 
synthetic data have  confirmed that these techniques yield 
improved  localization results and accurate uncertainty es- 
timates. The use of these techniques in several applications 
has yielded  excellent results. 
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